Maximize asset availability and minimize asset downtime with predictive maintenance


When an organization is manufacturing anything, it relies highly on the performance and efficiency of its machines. Unplanned equipment failure will directly affect organizations’ ability to meet customers’ demands or expectations. Companies need to know how their assets are operating currently and when they might need an upgrade to keep them running without interruption.

Data science presents businesses with an opportunity to drive innovation and stay ahead of the curve. Thanks to recent advancements in machine communication technologies and sensors, predictive maintenance has come to the forefront. Machines are monitored continuously, data is gathered, and machine learning algorithms are used to identify looming faults, and calculate the optimal time for the next maintenance by performing predictive analysis. In this way, enterprises can get deeper insights and predict situations that could become a bottleneck in the future and take necessary steps to avoid it.

Using machine learning to achieve optimum asset utilization

With SIA platform (Softweb Intelligence and Analytics), our goal is to empower companies with a complete and highly accurate picture of their assets in a variety of environments to eliminate blind spots, avoid unexpected machine failures, and increase customer satisfaction. Having a predictive maintenance program in place will enable continuous monitoring of machines and help in identifying problems as soon as they occur. Today, a lot of companies are reaping benefits of predictive maintenance as it facilitates fault detection during early stages and helps them to constantly improve the machine performance.

Make the most out of your data with SIA

  • Maintenance work is performed prior to failure
  • Avoid unexpected failure of equipment
  • Reduce production losses
  • Reduce the overall number of repairs
  • Knowing the exact component that needs repair will increase efficiency of field service technicians
  • Understand key drivers of equipment failure
  • Better stock management
  • Enhanced customer satisfaction
Talk to us about your data complexities and let SIA address them